Significant Mineral Resource Upgrade at Shaakichiuwaanaan Lithium Project to Underpin Impending PEA
VANCOUVER, BC, Aug. 6, 2024 /PRNewswire/ -- August 6, 2024 Sydney, Australia
HIGHLIGHTS
- The Mineral Resource Estimate for theShaakichiuwaanaan Lithium Project (formerly known as Corvette) reaffirmed as the largest lithium pegmatite Mineral Resource in the Americas and the 8th largest globally:
- Consolidated Mineral Resource statement (CV5 & CV13spodumene pegmatites)
- 80.1Mt at 1.44% Li2O and 163 ppm Ta2O5 Indicated, and
- 62.5Mt at 1.31% Li2O and 147 ppm Ta2O5, Inferred.
- Consolidated Mineral Resource statement (CV5 & CV13spodumene pegmatites)
- The Company remains on track to provide the market with a Preliminary Economic Assessment for the CV5Spodumene Pegmatite by the end of the September quarter based on the Mineral Resource Estimate announced herein.
- Shaakichiuwaanaan Mineral Resource includes 6.9 km of collective strike length now confirmed to host continuous spodumene pegmatite Mineral Resources (4.6 km at CV5 and 2.3 km at CV13).
- Significant growth potential both the CV5 and CV13 spodumene pegmatites remain open along strike at both ends, and to depth.
- Cut-off gradesensitivity analysis defines significant tonnage at very high grade, primarily reflecting the Nova and Vega zone discoveries at CV5 and CV13, respectively.
- Mineral ResourceEstimate includes only the CV5 and CV13 spodumene pegmatites. It does not include any of the other known spodumene pegmatite clusters on the Property CV4, CV8, CV9, CV10, CV12, and CV14.
- The Company intends to aggressively advance the remaininginfill drilling at CV5 to underpin a maiden ore reserve and Feasibility Study scheduled for Q3-2025.
Darren L. Smith, Vice President of Exploration, comments: "This is a significant update to our Mineral Resource Estimate at Shaakichiuwaanaan, which now includes both the CV5 and CV13 spodumene pegmatites as well as a significant amount of resources now classified as Indicated. This resource update objectively reaffirms the Tier 1 nature of the spodumene pegmatites that define the Shaakichiuwaanaan Project. Further, with both the CV5 and CV13 pegmatites remaining open, as well as multiple spodumene pegmatite clusters on the Property still to be drill tested, significant potential for further resource growth is evident."
"Exploration success in this industry is never less than a team effort. In this regard, I would like to acknowledge the dedication, work ethic, and contributions from the exploration and development teams, our supporting service providers and consultants, and finally our Chisasibi community workers who have all helped advance Shaakichiuwaanaan through to this key milestone on the path to potential production," added Mr. Smith.
Ken Brinsden, President, CEO, and Managing Director, comments: "This is a significant accomplishment for our team and a major milestone for the Company as we cement the Shaakichiuwaanaan Lithium Project's position as one of the most important new hard rock lithium assets globally."
"The delivery of a substantial maiden Indicated Resource of over 80 million tonnes is a major milestone which will underpin development studies, while the continued growth of the overall resource in conjunction with the Exploration Target announced separately today highlights the Tier-1 scale of the mineral system and the enormous potential for further growth. I am immensely proud of our team members and consultants who continue to put a significant focus on safety and quality deliverables as we move forward through the various phases of development".
"As we advance towards a Preliminary Economic Assessment in the near-term for the Shaakichiuwaanaan Project, and further towards a Feasibility Study scheduled for completion Q3 2025, the Company is firmly positioned as a leading candidate to provide long-term spodumene supply to the North American and European markets," added Mr. Brinsden.
Patriot Battery Metals Inc. (the "Company" or "Patriot") (TSX: PMET) (ASX: PMT) (OTCQX: PMETF) (FSE: R9GA)is pleased to announce an updated consolidated Mineral Resource Estimate ("MRE" or "Consolidated MRE") for the CV5 and CV13 spodumene pegmatites at its 100%-owned Shaakichiuwaanaan Property (the "Property" or "Project") formerly known as Corvette located in the Eeyou Istchee James Bay region of Quebec. The CV5 Spodumene Pegmatite is situated approximately 13.5 km south of the regional and allweather Trans-Taiga Road and powerline infrastructure corridor, and is accessible year-round by all-season road. The CV13 Spodumene Pegmatite is located approximately 3 km west-southwest of CV5.
The updated Consolidated MRE for the Shaakichiuwaanaan Project includes both the CV5 and CV13 spodumene pegmatites for a total of 80.1 Mt at 1.44% Li2O Indicated and 62.5 Mt at 1.31% Li2O Inferred, for 4.88Mt contained lithium carbonate equivalent ("LCE") (Table 1, Figure 1, and Figure 2). Presented by resource location/name, this MRE includes 78.6 Mt at 1.43% Li2O Indicated and 43.3Mt at 1.25% Li2O Inferred at CV5, and 1.5Mt at 1.62% Li2O Indicated and 19.1Mt at 1.46% Li2O Inferred at CV13.The cut-off grade is variable depending on the mining method and pegmatite (see footnotes in Table 1 for details). Mineral Resources are not Mineral Reserves as they do not have demonstrated economic viability
The Consolidated MRE for the Shaakichiuwaanaan Project, including that of the CV5 Pegmatite on its own, reaffirms it by a wide margin as the largest lithium pegmatite Mineral Resource in the Americas and 8th largest globally(Figure 1, Figure 2, Appendix 2, and Appendix 3).These metrics and context firmly reaffirm and entrench the Project as a Tier 1, world class lithium pegmatite asset.
A primary objective of the drilling completed subsequent to the July 2023 MRE, was to target a significant upgrade from Inferred resources to Indicated resources, which correlates to a more robust Mineral Resource with higher confidence classification. As a result, in addition to the overall size of the MRE increasing compared to the maiden MRE (see news release dated July 30, 2023), a significant amount of the resource has now been classified as Indicated (80.1 Mt at 1.44% Li2O) compared to no Indicated resources being classified in the maiden MRE.
The Consolidated MRE statement for the Shaakichiuwaanaan Project, presented in Table 1, includes only the CV5 and CV13 spodumene pegmatites, which remain open at both ends along strike and to depth along most of their length. Therefore, this Consolidated MRE does not include any of the other known spodumene pegmatite clusters on the Property CV4, CV8, CV9, CV10, CV12, and CV14 (Figure 3 and Figure 33). Collectively, this highlights a considerable potential for resource growth through continued drill exploration at the Property.
The Mineral Resource statement and relevant disclosure, sensitivity analysis, peer comparison, geological and block model views, and cross-sections are presented in the following figures and tables. A detailed overview of the MRE and Project is presented in the following sections in accordance with ASX Listing Rule 5.8.
MINERAL RESOURCE STATEMENT (NI 43-101)
Table 1: NI 43-101 Mineral Resource Statement for the Shaakichiuwaanaan Project.
Pegmatite | Classification | Tonnes | Li2O | Ta2O5 | Contained Li2O | Contained LCE |
CV5 & CV13 | Indicated | 80,130,000 | 1.44 | 163 | 1.15 | 2.85 |
Inferred | 62,470,000 | 1.31 | 147 | 0.82 | 2.03 |
| Mineral Resources were prepared in accordance with National Instrument 43-101 Standards for Disclosure of Mineral Projects ("NI 43-101") and the CIM Definition Standards (2014). Mineral Resources that are not Mineral Reserves do not have demonstrated economic viability. This estimate of Mineral Resources may be materially affected by environmental, permitting, legal, title, taxation, sociopolitical, marketing, economic, or other relevant issues. |
| The independent Competent Person (CP), as defined under JORC, and Qualified Person (QP), as defined by NI 43101 for this estimate is Todd McCracken, P.Geo., Director Mining & Geology Central Canada, BBA Engineering Ltd. The Effective Date of the estimate is June 27, 2024 (through drill hole CV24-526). |
| Estimation was completed using a combination of ordinary kriging and inverse distance squared (ID2) in Leapfrog Edge software with dynamic anisotropy search ellipse on specific domains. |
| Drill hole composites at 1 m in length. Block size is 10 m x 5 m x 5 m with sub-blocking. |
| Both underground and open-pit conceptual mining shapes were applied as constraints to demonstrate reasonable prospects for eventual economic extraction. Cut-off grades for open-pit constrained resources are 0.40% Li2O for both CV5 and CV13, and for underground constrained resources are 0.60% Li2O for CV5 and 0.80% Li2O for CV13. Open-pit and underground Mineral Resource constraints are based on a spodumene concentrate price of US$1,500/tonne (6% basis FOB Bcancour) and an exchange rate of 0.76 USD/CAD. |
| Rounding may result in apparent summation differences between tonnes, grade, and contained metal content. |
| Tonnage and grade measurements are in metric units. |
| Conversion factors used: Li2O = Li x 2.153; LCE (i.e., Li2CO3) = Li2O x 2.473, Ta2O5 = Ta x 1.221. |
| Densities for pegmatite blocks (both CV5 & CV13) were estimated using a linear regression function (SG = 0.0688x Li2O% + 2.625) derived from the specific gravity ("SG") field measurements and Li2O grade. Non-pegmatite blocks were assigned a fixed SG based on the field measurement median value of their respective lithology. |
The Shaakichiuwaanaan MRE covers a collective strike length of approximately 6.9 km, drill hole to drill hole (4.6 km at CV5, and 2.3 km at CV13). Further, the CV5 and CV13 spodumene pegmatites are situated along the same geological trend, separated by approximately 2.9 km, and therefore this corridor is considered highly prospective for lithium pegmatite (Figure 3). This corridor remains to be drill tested; however, current interpretation of the collective dataset over the trend indicates a reasonable potential for connectivity of the pegmatite body(s). As such, given the similar mineralogy, geochemistry, host geological and structural trend, and close proximity to each other (< 3 km), the MREs for the CV5 and CV13 pegmatites have been presented as a consolidated MRE for the Project (Table 1). The MRE is further detailed below with respect to conceptual mining constraint shapes by resource location/name (Table 2).
The Shaakichiuwaanaan database includes 537 diamond drill holes completed over the 2021, 2022, 2023, and 2024 (through the end of April drill hole CV24-526) programs, for a collective total of 169,526 m, as well as 88 outcrop channels totalling 520m. The MRE is supported by 344 holes (129,673 m) and 11 outcrop channels (63m) at CV5, and 132 holes (29,059 m) and 54 outcrop channels (340m) at CV13.
Table 2: Shaakichiuwaanaan Mineral Resource by Pegmatite and Conceptual Mining Constraint.
Cut-off | Conceptual |
| Classification | Tonnes (Mt) | Li2O | Ta2O5 | Contained | Contained |
0.40 | Open-Pit | CV5 | Indicated | 78.1 | 1.44 | 162 | 1.12 | 2.78 |
0.60 | Underground | 0.5 | 0.91 | 169 | 0.00 | 0.01 | ||
Total | 78.6 | 1.43 | 162 | 1.13 | 2.79 | |||
0.40 | Open-Pit | CV5 | Inferred | 29.9 | 1.34 | 168 | 0.40 | 0.99 |
0.60 | Underground | 13.4 | 1.04 | 145 | 0.14 | 0.35 | ||
Total | 43.3 | 1.25 | 161 | 0.54 | 1.34 | |||
0.40 | Open-Pit | CV13 | Indicated | 1.5 | 1.62 | 195 | 0.02 | 0.06 |
0.80 | Underground | 0 | 0 | 0 | 0.00 | 0.00 | ||
Total | 1.5 | 1.62 | 195 | 0.02 | 0.06 | |||
0.40 | Open-Pit | CV13 | Inferred | 17.7 | 1.50 | 118 | 0.27 | 0.66 |
0.80 | Underground | 1.4 | 1.05 | 73 | 0.01 | 0.04 | ||
Total | 19.1 | 1.46 | 115 | 0.28 | 0.69 |
All Table 1 footnotes are applicable. |
SENSITIVITY ANALYSIS
The sensitivity analysis for the Shaakichiuwaanaan MRE (Table 3and Figure 4) is presented as the sum of the open-pit and underground constrained and classified resources at the same cut-off. The sensitivity analysis by cut-off grade ("COG") defines significant tonnage at very high-grade, primarily reflecting the Nova Zone at CV5 and Vega Zone at CV13.
- At a 1.5% Li2O COG for the CV5 Pegmatite, there is a total of 30.4 Mt at 2.09 Li2O Indicated and 13.6 Mt at 1.99 Li2O Inferred.
- At a 1.5% Li2O COG for the CV13 Pegmatite, there is a total of 0.7 Mt at 2.20 Li2O Indicated and 6.6 Mt at 2.47 Li2O Inferred.
Both the Nova and Vega zones have beentraced over a significant distance/area with multiple drill hole intercepts (core length) ranging from 2 to 25 m (CV5) and 2 to 10 m (CV13) at >5% Li2O, each within a significantly wider mineralized pegmatite zone of >2% Li2O (Figure 16, Figure 25, and Figure 26). These zones are located approximately 6 km apart, along the same geological trend, and emphasize not only the scale of the entire mineralized system at Shaakichiuwaanaan but also its robustness in mineralized intensity defined to date.
The following Table 3 and Figure 4 outline the corresponding tonnage and lithium grade at various cut-off grades for the Shaakichiuwaanaan MRE. In addition to evaluating sensitivities to cut-off grades, this table can help relate the tonnage and grades at Shaakichiuwaanaan more directly to those calculated for peer deposits, which may have applied different cut-off grades to their resources.
GEOLOGICAL AND BLOCK MODELS
The geological model underpinning the MRE for the CV5 Spodumene Pegmatite interprets a single, steeply dipping (northerly), continuous, principal spodumene pegmatite body ranging in true thickness from <10 m to more than 125 m, extending over a strike length of approximately 4.6km (drill hole to drill hole), which is flanked by multiple subordinate lenses. At CV5, the pegmatite may extend from surface to depths of more than 450 m in some locations. The CV5 Spodumene Pegmatite, which includes the principal body and all subordinate lenses, remains open along strike at both ends and to depth along a significant portion of its length.
The geological model underpinning the MRE for the CV13 Spodumene Pegmatite interprets a series of flat-lying to moderately dipping (northerly), sub-parallel trending spodumene pegmatite bodies, of which three appear to dominate. The pegmatite ranges in true thickness from <5 m to more than 40 m, and extends over a strike length of approximately 2.3 km. The CV13 Spodumene Pegmatite, which includes all proximal pegmatite lenses, remains open along strike at both ends and to depth along a significant portion of its length.
The geological model of the CV5 Spodumene Pegmatite, which forms the bulk of the Shaakichiuwaanaan MRE, is presented in plan, inclined, and side view in Figure 5 to Figure 11. The MRE block model of the CV5 Spodumene Pegmatite, block classifications, and cross-sections are presented in Figure 12 to Figure 18.
The geological model of the CV13 Spodumene Pegmatite is presented in plan and inclined view in Figure 19 and Figure 20, respectively. The MRE block model of the CV13 Spodumene Pegmatite, block classifications, and cross-sections are presented in Figure 21 to Figure 28.
CV5 Spodumene Pegmatite
Figures 7-18
Geologically modelled pegmatite where blocks do not populate, have not reached the threshold confidence for the Inferred Mineral Resource category based on the classification criteria and/or mining constraint shape applied. Additional drilling is required to elevate confidence to the threshold allowing for an inferred classification of grade and tonnage to be assigned, and for these blocks to fall within a conceptual mining constraint shape required to satisfyRPEEE in accordance with NI 43-101.
CV13 Spodumene Pegmatite
Figures 19-28
TANTALUM
In addition to the lithium as the primary commodity of interest, the CV5 Pegmatite also contains a significant amount of tantalum as a potentially recoverable by-product 80.1 Mt at 1.44% Li2O and 163 ppm Ta2O5 Indicated, and 62.5 Mt at 1.31% Li2O and 147 ppm Ta2O5 Inferred. Mineralogy completed to date indicatesthat tantalite is the tantalum-bearing mineral, which may potentially be recoverable from the tailings of the primary lithium recovery process (i.e., potential valorization of waste streams). Additionally, the MRE suggeststantalum grades at the CV5 Pegmatite are generallyhigher compared to that of the CV13 Pegmatite, although grades at CV13 remain significant (Table 2).The tantalum grades were not used in generating the potential mineable shapes at CV5 and CV13
Tantalum is currently listed as a critical and strategic mineral by the province of Quebec(Canada), Canada, European Union, Australia, Japan, India, South Korea, and the United States. Tantalum is a critical component required for a range of high-tech devices, electronics, and essential niche applications, including in capacitors as it has the highest capacitance of any metal. According to the United States Geological Survey, no tantalum is currently produced in North America or Europe, with a majority of production coming out of the Democratic Republic of Congo and Rwanda.
NEXT STEPS
The Company will continue infill drilling at the CV5 Pegmatite this summer-fall, as well as testing for extensions along strike, up dip, and down dip, where it remains open. The primary focus of the drill program is to support a further increase in MRE confidence from the Inferred category to the Indicated category. This drilling will target Inferred blocks as categorized in the MRE announced herein, with the ultimate objective of delineating a coherent body of Indicated Mineral Resource blocks to underpin a Feasibility Study scheduled for the second half of 2025.
Additionally, the Company will continue its exploratory drill program at CV13, focused on further delineation of the high-grade Vega Zone, as well as various geotechnical, hydrogeological, and geomechanical drilling in support of advancing development studies at CV5.
ASX LISTING RULE 5.8
As the Company is listed on both the Canadian Toronto Stock Exchange (the "TSX") as well as the Australian Securities Exchange (the "ASX"), there are two applicable regulatory bodies resulting in additional disclosure requirements. This Mineral Resource estimate has been completed in accordance with the Canadian National Instrument 43-101 Standards of Disclosure for Mineral Projects, and the Company will, in accordance with NI 43-101, prepare and file a technical report supporting the Mineral Resource Estimate on SEDAR+ within 45 days of this announcement. Additionally, in accordance with ASX Listing Rule 5.8 and the JORC 2012 reporting guidelines, a summary of the material information used to estimate the Mineral Resource for the Shaakichiuwaanaan Project is detailed below. For additional information, please refer to JORC Table 1, Section 1, 2, and 3, as presented in Appendix 1 of this announcement.
MINERAL TITLE
The Shaakichiuwaanaan Property is located approximately 220 km east of Radisson, QC, and 240km north-northeast of Nemaska, QC. The northern border of the Property's primary claim grouping is located within approximately 6 km to the south of the Trans-Taiga Road and powerline infrastructure corridor (Figure 29). The La Grande-4 (LG4) hydroelectric dam complex is located approximately 40 km north-northeast of the Property. The CV5 Spodumene Pegmatite, part of the Shaakichiuwaanaan MRE, is located central to the Property, approximately 13.5 km south of KM270 on the Trans-Taiga Road, and is accessible year-round by all-season road. The CV13 Spodumene Pegmatite is located approximately 3 km west-southwest of CV5.
The Property is comprised of 463 CDC mineral claims that cover an area of approximately 23,710ha with the primary claim grouping extending dominantly east-west for approximately 51 km as a nearly continuous, single claim block. All claims are registered 100% in the name of Lithium Innova Inc., a wholly owned subsidiary of Patriot Battery Metals Inc.
GEOLOGY AND GEOLOGICAL INTERPRETATION
The Property overlies a large portion of the Lac Guyer Greenstone Belt, considered part of the larger La Grande River Greenstone Belt, and is dominated by volcanic rocks metamorphosed to amphibolite facies. Rocks of the Guyer Group (amphibolite, iron formation, intermediate to mafic volcanics, peridotite, pyroxenite, komatiite, as well as felsic volcanics) predominantly underly the Property (Figure 32). The amphibolite rocks that trend east-west (generally steeply south dipping) through this region are bordered to the north by the Magin Formation (conglomerate and wacke) and to the south by an assemblage of tonalite, granodiorite, and diorite, in addition to metasediments of the Marbot Group (conglomerate, wacke) in the areas proximal to the CV5 Spodumene Pegmatite. Several regional-scale Proterozoic gabbroic dykes also cut through portions of the Property (Lac Spirt Dykes, Senneterre Dykes). The lithium pegmatites on the Property are hosted predominantly within amphibolite's, metasediments, and to a lesser extent ultramafic rocks.
Exploration of the Property has outlined three primary mineral exploration trends, crossing dominantly east-west over large portions of the Property Golden Trend (gold), Maven Trend (copper, gold, silver), and CV Trend (Li-Cs-Ta Pegmatite). The Golden Trend is focused over the northern areas of the Property, the Maven Trend in the southern areas, and the CV Trend "sandwiched" between. Historically, the Golden Trend has received the exploration focus followed by the Maven Trend. However, the identification of the CV Trend and the numerous lithium-tantalum pegmatites discovered to date, represents a previously unknown lithium pegmatite district that was first identified in 2016/2017 by Dahrouge Geological Consulting Ltd. and the Company. The Company's Vice President of Exploration, Darren L. Smith, M.Sc., P.Geo., was a member of the initial team that identified the potential at Shaakichiuwaanaan, later joining the Company's Advisory Board in 2018, and as Vice President of Exploration in 2019. Mr. Smith has managed the exploration of the Shaakichiuwaanaan Property since the initial work programs, including drilling of the lithium pegmatites.
At the Property, including CV5 and CV13, lithium mineralization is observed to occur within lithium-cesium-tantalum ("LCT") pegmatites, which may be exposed at surface as isolated high relief 'whale-back' landforms (i.e., outcrops) (Figure 30 and Figure 31). Given the proximity of some lithium pegmatite outcrops to each other at the various clusters, as well as the shallow till cover, it is probable that some of the outcrops may reflect a discontinuous surface exposure of a single, larger pegmatite 'outcrop' subsurface. Further, the high number of well-mineralized pegmatites along the trend at these clusters indicates a strong potential for a series of relatively closely spaced/stacked, sub-parallel, and sizable spodumene-bearing pegmatite bodies, with significant lateral and depth extent, to be present.
To date, the LCT pegmatites at the Property have been observed to occur within a corridor of approximately 1 km in width that extends in a general east-west direction across the Property for at least 25 km the 'CV Lithium Trend' with significant areas of prospective trend that remain to be assessed. The core area of the trend includes the CV5 and CV13 spodumene pegmatites with approximate strike lengths of 4.6 km and 2.3 km, respectively, as defined by drilling to date and which remain open. Further, the CV5 and CV13 spodumene pegmatites are situated along the same geological trend, separated by approximately 2.9 km of highly prospective lithium pegmatite trend (Figure 3). This corridor remains to be drill tested; however, current interpretation of the collective dataset indicates a reasonable potential for connectivity of the pegmatite body(s) that define the CV5 and CV13 pegmatites.
To date, eight (8) distinct lithium pegmatite clusters have been discovered along the CV Lithium Trend at the Property CV4, CV5, CV8, CV9, CV10, CV12, CV13, and CV14. Each of these clusters includes multiple lithium pegmatite outcrops in close proximity, oriented along the same local trend, and have been grouped to simplify exploration approach and discussion (Figure 33). The Mineral Resource Estimate reported herein is limited to only the CV5 and CV13 spodumene pegmatites (Figure 3).
The pegmatites at the Property, including CV5 and CV13, are very coarse-grained and off-white in appearance, with darker sections commonly composed of mica and smoky quartz, and occasionally tourmaline. Spodumene is the dominant lithium-bearing mineral identified at all the lithium occurrences documented to date. It occurs as typically centimetre to decimetre-scale crystals that may exceed 1.5 m in length and range in colour from cream-white, to light-grey, to light-green. Minor localized lepidolite has been observed in core and in a small number of lithium pegmatite outcrops.
To date, at the CV5 Spodumene Pegmatite, multiple individual spodumene pegmatite dykes have been geologically modelled. However, a vast majority of the Mineral Resource is hosted within a single, large, principal spodumene pegmatite dyke, which is flanked on both sides by multiple, subordinate, sub-parallel trending dykes. The CV5 Spodumene Pegmatite, including the principal dyke, is modelled to extend continuously over a lateral distance of at least 4.6 km and remains open along strike at both ends and to depth along a large portion of its length. The width of the currently known mineralized corridor at CV5 is approximately ~500 m, with spodumene pegmatite intersected at depths of morethan 450 m in some locations (vertical depth from surface). The pegmatite dykes at CV5 trend west-southwest (approximately 250/070 RHR), and therefore dip northerly, which is different than the host amphibolites, metasediments, and ultramafics which dip moderately in a southerly direction.
The principal spodumene pegmatite dyke at CV5 ranges from <10 m to more than 125 m in true width, and may pinch and swell aggressively along strike, as well as up and down dip. It is primarily the thickest at near-surface to moderate depths (<225 m), forming a relatively bulbous, elongated shape, which may flair to surface and to depth variably along its length. As drilling has focused over the principal dyke, the immediate CV5 corridor has not been adequately drill tested and it is interpreted that additional subordinate pegmatite lenses are situated proximal, especially in the southcentral areas of the deposit. The pegmatites that define CV5 are relatively undeformed and very competent, although likely have some meaningful structural control.
The geological model underpinning the MRE for the CV13 Spodumene Pegmatite interprets a series of flat-lying to moderately dipping (northerly), sub-parallel trending spodumene pegmatite bodies, of which three appear to dominate. The pegmatite bodies are coincident with the apex of a regional structural flexure whereby the pegmatite manifests a west arm trending ~290 and an east arm trending ~230. Drilling to date indicates the east arm includes significantly more pegmatite stacking compared to the west, and also carries a significant amount of the overall CV13 Pegmatite tonnage and grade, highlighted by the high-grade Vega Zone.
The CV13 Pegmatite ranges in true thickness from <5 m to more than 40 m and extends continuously over a collective strike length of approximately 2.3 km, along its west and east arms. The CV13 Spodumene Pegmatite, which includes all proximal pegmatite lenses, remains open along strike at both ends and to depth along a significant portion of its length. Spodumene mineralization has been traced more than 400 m down-dip; however, due to the typically shallow dips of the pegmatite bodies, is only ~200 m vertical depth from surface.
Both the CV5 and CV13 spodumene pegmatites display internal fractionation along strike and up/down dip, which is evidenced by variation in mineral abundance including spodumene and tantalite. This is highlighted by the high-grade Nova Zone (CV5) and Vega Zone (CV13), each situated at the base of their respective pegmatite lenses, and traced over a significant distance with multiple drill hole intercepts (core length) ranging from 2 to 25 m (CV5) and 2 to 10 m (CV13) at >5% Li2O, respectively, each within a significantly wider mineralized zone of >2% Li2O (Figure 16and Figure 26). The Vega Zone is situated approximately 6 km south-west and along geological trend of the Nova Zone. Both zones share several similarities including lithium grades and very coarse decimetre to metre size spodumene crystals. However, both pegmatite zones have distinct orientations whereby the Vega Zone is relatively flat-lying to shallow dipping while the Nova Zone is steeply dipping to vertical.
The CV5 Spodumene Pegmatite (4.6 km in strike length) has currently been delineated to within approximately 1.5 km of the CV4 Spodumene Pegmatite to the east, and to within approximately 2.9 km of the CV13 Spodumene Pegmatite (2.3 km in strike length) to the west (Figure 3). The CV12 Spodumene Pegmatite cluster is situated ~2.4 km northwest along strike of CV13. Collectively, this area of the CV Lithium Pegmatite trend extends nearly 15 km, of which 6.9 km is confirmed by drilling to be continuous spodumene pegmatite hosting defined Mineral Resources, with ~8 km of this highly prospective trend remaining to be drill tested.
The scale of LCT pegmatite present along this local trend (CV12 through CV4), as well as the similar mineralogy and very coarse spodumene crystal size, suggests a deeply rooted and common 'plumbing' system and source of the lithium mineralized bodies discovered to date. The area of the CV Lithium Trend, extending from CV12 easterly to CV4, is therefore highly prospective with data collected to date suggesting a reasonable potential for lithium pegmatite to be present throughout this trend, and potentially continuously. Due to a veil of glacial till cover, there is poor outcrop exposure, therefore requiring significant drill testing to confirm continuity.